Effect of Zr⁴⁺ ions doping on ultraviolet long afterglow property in CdSiO₃: Bi³⁺ phosphor powder

SHENFENG LAI, ZHENGWEN YANG^{*}, HANGJUN WU, JIAYAN LIAO, JIANBEI QIU, ZHIGUO SONG, YONG YANG, DACHENG ZHOU

College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China

The CdSiO₃: Bi³⁺, Zr⁴⁺ phosphor powder with ultraviolet long afterglow emission was synthesized by high temperature solid state reaction and influence of Zr⁴⁺ ions on the ultraviolet long afterglow luminescence properties was investigated. The Zr⁴⁺ ions as co-dopants enhance greatly the long afterglow emission intensity and duration of CdSiO₃: Bi³⁺ phosphor powders and the enhancement mechanism are discussed in this paper. The ultraviolet region long afterglow phosphor powder may find many technologically important applications in disinfecting and photo-catalysis as the ultraviolet light source.

(Received May 8, 2014; accepted January 21, 2015)

Keywords: Optical materials, Ultraviolet afterglow, CdSiO₃: Bi³⁺, Zr⁴⁺, Enhancement

1. Introduction

Long afterglow phosphor powders are a type of energy storage material, which can absorb ultraviolet (UV) or visible light and gradually release the energy in the darkness at a certain wavelength [1, 2]. It is well known that the traditional typical long afterglow phosphor is sulfide such as calcium sulfide and so on [3, 4]. However, its afterglow is not bright or long enough for applications. Radioisotopes was used in the sulfide phosphor in order to enhance its long afterglow performance, however, the application of radioisotopes have been limited in the view of safety and environmental considerations. At present, most of long afterglow phosphors are based on alkaline-earth aluminates and silicates. Water resistance and chemical stability of aluminates long afterglow materials are poor, which limit its practical application. In addition, all aluminates phosphors are prepared at above 1200°C by high temperature solid state reaction. So it may be preferable to search for long afterglow phosphors that can be prepared at lower temperature. Compared with aluminate long afterglow phosphors, silicate systems have good water-resistant property, chemical stability and multi-color emission. Additionally, some silicate phosphors have a low synthesized temperature. For example, the long afterglow phosphors based on CdSiO₃ can be synthesized at about 1000°C by solid-state reaction method. Based on these intrinsic merits, many studies on silicate long afterglow phosphors as a host have been conducted [5-7].

Among the silicate phosphors, $CdSiO_3$ is extensively used as a matrix material with long afterglow emission, which has a crystal structure with one-dimensional chain of edge-sharing SiO₄ tetrahedrons. In this kind of low-dimensional structure, it is very easy to dope other ions into the host lattice and generate traps located at suitable depths that can store the excitation energy and emit light at room temperature [8]. Recently, rare earth activated CdSiO₃ long afterglow phosphors have been studied extensively [9-12] and significant progress has been made. Blue, green and white color long afterglow emissions have been obtained in the rare earth activated CdSiO₃ long afterglow phosphors. Beside the rare-earth ions doped phosphors, the Bi ions-doped materials are also good candidates for photonic sources and many researchers have studied the luminescence behaviors of the Bi activators [13, 14]. Very recently, white long afterglow emission property of Bi3+ doped phosphor was obtained [15]. However, as we know, there have been no reports about the ultraviolet afterglow phosphors based on the CdSiO₃ host.

In the previous investigations, rare earth ions (Y, La, Gd, Lu) were used extensively to improve the visible long afterglow emission properties [16]. Among co-doping ions, Zr^{4+} is an important one in the development of long afterglow phosphors. In this paper, new ultraviolet long afterglow phosphors CdSiO₃: Bi³⁺, Zr⁴⁺ were synthesized by solid-state method at 1000°C for 3h. The effects of the Zr⁴⁺ on ultraviolet long afterglow luminescent properties were analyzed.

2. Experimental

The CdSiO₃: 2% Bi^{3+} , x%Zr⁴⁺ (x=0,1,2,3,4) long afterglow phosphor powder were prepared by using the

conventional high temperature solid-state method. The raw materials were analytical grade CdO, SiO_2 , Bi_2O_3 and ZrO_2 . Stoichiometric amounts of CdO, SiO_2 , Bi_2O_3 and ZrO_2 were weighed, and mixed in an agate mortar. The grinded powder mixtures were then transferred into alumina crucibles for sintering. The mixtures were then sintered in air at 1000°C for 3h.

The phases of the powder samples were characterized by an X-ray powder diffractometer (Cu K_{α} radiation λ =1.542Å, 45 kV, 40 mA). The scanning electron microscopy (SEM) images of powders were obtained with field-emission scanning electron microscope а (QUANTA200). The excitation and emission spectra were recorded by using a HITACHI F-7000 fluorescence spectrophotometer. The excitation spectra were obtained by scanning wavelengths from 200 to 350 nm monitored at 360 nm. The emission spectra were scanned from 300 to 550 nm while excited at 233 and 274 nm. The afterglow intensity decay curve was measured on the same instrument. All the measurements of the synthesized powder samples were performed at room temperature.

3. Results and discussion

In general, the sintering temperature has significant effects on the crystal structure of CdSiO₃. In the previous reports [10], the XRD peaks from impurity was found when the sintering temperature at 850, 875, 900°C. When the sintering temperature is up to 1100°C, the part of CdSiO₃ turns to glass phase and its optical properties was ruined [17]. Fig. 1 shows the XRD patterns of the powder samples obtained through the conventional high temperature solid-state method at 1000°C for 3 h. The XRD patterns of the powder samples showed that the phases in the powder samples matched well with the JCPDS card no.35-0810, indicating that the phases in these phosphors were single phase CdSiO₃ with monoclinic structure belonging to the spatial group P21/c [9]. The Bi^{3+} and Zr^{4+} doping ions did not change the general structure of CdSiO₃. Due to the similarity between the ionic radii of Cd²⁺ and the Bi³⁺ dopants, the Bi³⁺ ions (1.03Å) are expected to occupy the Cd^{2+} (0.97Å) sites in the CdSiO₃ host and no Bi³⁺ion is expected to occupy the Si⁴⁺ sites (0.41Å). The SEM images of CdSiO₃:2%Bi³⁺ and $CdSiO_3:2\%Bi^{3+}$, $3\%Zr^{4+}$ were shown in Fig. 2 (a) and (b), respectively. It shows that the diameter of both samples is about 5 µm. The Zr⁴⁺ doping has no obvious effect on morphology of the powders.

Fig. 1. The XRD patterns of the samples $CdSiO_3:2\%Bi^{3+}$; $CdSiO_3:2\%Bi^{3+}$, $3\%Zr^{4+}$.

*Fig. 2. The SEM image of CdSiO*₃: 2%*Bi*³⁺ (*a*); *CdSiO*₃: 2%*Bi*³⁺, 3%*Zr*⁴⁺ (*b*).

Fig. 3 presents the phosphorescence excitation spectrum of CdSiO₃:2%Bi³⁺, 3%Zr⁴⁺ powder samples (λ_{em} =360 nm). Two broad excitation bands centered at 233

and 274 nm were observed. In order to understand the origin of two broad excitation bands, emission and excitation spectra of pure CdSiO₃ without Zr⁴⁺ and Bi³⁺ were measured, as shown in the inset of Fig.3. Emission peak centered at about 580 nm from pure CdSiO₃ host was observed under the excitation of 233 nm. A broad excitation band centered at 233 nm was observed in pure CdSiO₃ phosphor by monitoring the 580 nm emission, suggesting that the 233 nm excitation band is related to the absorption of pure CdSiO₃ host [16]. The 233 nm excitation band from absorption of CdSiO₃ host was observed in previous investigations [16]. It can be seen clearly that no excitation peak was observed by monitoring the emission of 360 nm in the pure CdSiO₃ host. Therefore, the broad excitation band centered at 274 nm was attributed to ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transitions of Bi³⁺ in the CdSiO₃:Bi³⁺, Zr^{4+} phosphor [18].

Fig. 3. The phosphorescence excitation spectra of CdSiO₃:2%Bi³⁺, 3%Zr⁴⁺ by monitoring the emission of 360 nm; Inset showed the phosphorescence spectra of pure CdSiO₃.

Fig. 4 shows the phosphorescence emission spectra of $CdSiO_3:Bi^{3+}$ powder under the excitation of 233(a) and 274(b) nm, respectively. Broad ultraviolet phosphorescence emission band centered at about 360 nm ranging from 300 to 500 nm can be seen in CdSiO₃: Bi³⁺ samples, which are the characteristic emission of Bi³⁺ ions [19]. Gas discharge lamps have emission that can cover most of the UV spectra. However, no emission in gas discharge lamps occurs when the excitation was stopped. The UV region long afterglow phosphors have persistent emission. Therefore, the ultraviolet region long afterglow phosphors may find many technologically important applications in the disinfecting as UV light source. As one of the disinfecting light source, the application of UV long afterglow phosphor can save energy and it has a special advantage in the event of a disaster or no power. This UV long afterglow phosphor is environment-friendly in comparison with normal Hg discharge UV lamp as the

light source. Additionally, the UV long afterglow phosphor has also potential application in photo-catalysis field. In general, the present commercial photo-catalyst TiO₂ only shows photo-catalytic activity under 200–400 nm irradiation. Therefore, the long afterglow phosphor below 400 nm may availably support TiO₂ powders to keep photo-catalytic activity even at night. However, it is disappointing that the most of the present long afterglow phosphors only emit visible light. Therefore, the CdSiO₃ UV long afterglow phosphor is very interesting for the photo-catalyst application. When this UV region long afterglow phosphor is used together with semiconductor photo-catalyst, photo-catalysis effect may be obtained at night. In order to investigate the effect of Zr⁴⁺ on the long afterglow property of $CdSiO_3:Bi^{3+}$ phosphor, the concentration of Bi^{3+} was fixed as 2mol% and Zr^{4+} concentration was changed from 1 to 4mol%. The phosphorescence emission spectra of CdSiO₃:Bi³⁺, Zr⁴⁺ with different concentration of Zr⁴⁺ under the excitation of 233(a) and 274(b) nm, respectively, were also shown in the Fig. 4. It can be seen that the ultraviolet phosphorescence intensity of CdSiO₃:Bi³⁺, Zr⁴⁺ phosphor powders depend on the Zr⁴⁺ concentration. CdSiO₃:Bi³⁺ Zr^{4+} phosphors co-doped with have higher phosphorescence intensity than CdSiO₃:Bi³⁺ without Zr⁴⁺ doping. The phosphorescence intensity for CdSiO₃:Bi³⁺, Zr⁴⁺ phosphors increased at first and then decreased. The optimal concentration of Zr4+ was 3% for maximum phosphorescence intensity.

Fig. 4. The phosphorescence emission spectra of $CdSiO_3:Bi^{3+}$, Zr^{4+} with different concentration of Zr^{4+} under the excitation of 233 (a) and 274 (b) nm.

The ultraviolet afterglow decay curves were measured after the powder samples had been excited for 1min at 233 nm or 274 nm, and the results are presented in Fig. 5(a) and (b), respectively. It can be observed that the ultraviolet afterglow intensity of all the powder samples tends to decrease quickly at first and then slowly. Similar behavior was previously reported for $CdSiO_3:Mn^{2+}$ [20]. The CdSiO₃:Bi³⁺, Zr⁴⁺ phosphors have longer decay time than $CdSiO_3:Bi^{3+}$ without Zr^{4+} . Among all the powder samples, the afterglow performance of the CdSiO₃:2% Bi³⁺, 3% Zr⁴⁺ phosphor was best under the 233 or 274 nm. The phenomena of long afterglow luminescence are related to electron and holes trapping processes by some foreign traps (defects) in the CdSiO₃: Bi³⁺, Zr⁴⁺ phosphor. When CdSiO₃ host are excited through 233 nm UV light irradiation, as shown in Fig.6 (a), electrons in the valence band were excited to the conduction band, resulting in creation of holes in the valence band. The excited electrons and holes are directly trapped by neighboring defect centers such as $\mathrm{Zr}_{Cd}^{\bullet\bullet}$ and $V_{Cd}^{\prime\prime}$. With thermal excitation at room temperature, electrons and holes will be released gradually from those trapping centers. The electrons will transfer to ³P₁ state of Bi³⁺, and the holes will move to the ${}^{1}S_{0}$ ground state of Bi³⁺. The transition from ${}^{3}P_{1}$ to ${}^{1}S_{0}$ of Bi^{3+} ions results in the UV long afterglow luminescence. Under the excitation of 274 nm, the possible process of long afterglow emission of CdSiO₃:Bi³⁺, Zr⁴⁺ phosphors is similar to that of 233 nm excitation except that excited carriers (electrons and holes) captured by the traps is attributed to Bi³⁺ instead of CdSiO₃ matrix, as shown in Fig. 6 (b). It is well known that the long afterglow emission properties of phosphors are strongly dependent on defects in the CdSiO₃ host lattice, which act as trapping centers. As is mentioned above, the Zr⁴⁺ ions are expected to occupy the Cd²⁺ sites in the CdSiO₃ host matrix. Two Cd²⁺ ions was replaced by one Zr^{4+} ion by $[Zr^{4+}+2Cd^{2+}\rightarrow Zr^{\bullet\bullet}_{Cd} + V''_{Cd}]$, and produce the $Zr_{Cd}^{\bullet\bullet}$ positive charge defects as well as a negative charge defect (V''_{Cd}) to charge compensation. That is to say, additional negative charge defects $V_{Cd}^{\prime\prime}$ were generated when two Cd²⁺ ions was replaced by one Zr⁴⁺ ion besides Zr^{••}_{Cd} positive charge defects.

Fig. 5. The afterglow decay curves of $CdSiO_3$: Bi^{3+} , Zr^{4+} with different concentration of Zr^{4+} monitored at 360 nm, (a) excited at 233nm; (b) excited at 274nm.

Fig. 6. Schematic diagram of the long afterglow mechanism in the $CdSiO3:Bi^{3+}, Zr^{4+}$.

The electrons and holes captured by traps in these phosphors can be easily released by thermal energy at room temperature. In general, more trap centers with suitable depths are generated, more released energy attributed to recombination of electrons and holes are transferred to active centers, which lead to enhancement of characteristic long afterglow emission of active centers. Therefore, improvement of long afterglow properties of the CdSiO₃: Bi³⁺ phosphor may be due to creation of more traps with suitable depths by Zr^{4+} doping in the CdSiO₃: Bi³⁺ matrix. However, depth and density of traps in the CdSiO₃: Bi³⁺, Zr⁴⁺ phosphor are not demonstrated now. Further investigation will be done.

4. Conclusion

In summary, a new kind of CdSiO₃: Bi³⁺, Zr⁴⁺ phosphor powder with ultraviolet long afterglow emission was obtained. The CdSiO₃: Bi³⁺, Zr⁴⁺ phosphors exhibited a broad band emission ranging from 300 to 500 nm with maximum at 360 nm emissions under the excitation of 233 or 274 nm. The Zr⁴⁺ ion co-dopant into long afterglow CdSiO3: Bi³⁺ phosphor powder can prolong its afterglow time. Reasons of improvement of long afterglow properties of the CdSiO₃: Bi³⁺ phosphor are complicated, which may be due to creation of more traps with suitable depths by Zr⁴⁺ doping in the CdSiO₃: Bi³⁺ matrix. The UV region long afterglow phosphors may find many technologically important applications in disinfecting and photo-catalysis as the ultraviolet light source.

Acknowledgements

This work was supported by the Reserve talents project of Yunnan Province (2013HB068).

References

 G. Denis, P. Deniard, X. Rocquefelte, M. Benabdesselam, S. Jobic, Opt. Mater. **32**, 941(2010).

- [2] F. Gutiérrez-Martín, F. Fernández-Martinez, P. Díaz, C. Colón, A. Alonso-Medina, J. Alloys Compd. 501, 193 (2010).
- [3] Y. Kojima, T. Toyama, J. Alloys Compd. 475, 524 (2009).
- [4] Y. Kojima, K. Aoyagi, T. Yasue, J. Lumin. 115, 13 (2005).
- [5] H. A. Hoppe, P. Morys, W. Schnick, A. Seilmeier, H. Lutz, J. Phys. Chem. Solids **61**, 2001 (2000).
- [6] C. Fu, Y. Hu, Y. Wang, H. Wu, X. Wang, J. Alloys Compd. **502**, 423 (2010).
- [7] Y. Ito, A. Komeno, K. Uematsu, K. Toda, M. Sato, 408, 907 (2006).
- [8] L. Zhang, G. Hong, X. Sun, Chin. Chem. Lett. 10, 799 (1999).
- [9] C. M. Abreu, R. S. Silva, M. E. G. Valerio, Z. S. Macedo, J. Solid State Chem. 200, 54 (2013).
- [10] X. Qu, L. Cao, W. Liu, G. Su, J. Alloys Compd. 533, 83 (2012).
- [11] Y. Liu, B. Lei, C. Shi, Chem. Mater. 17, 2108 (2005).
- [12] B. Lei, Y. Liu, Z. Ye, C. Shi, Chin. Sci. Bull. 48, 2434 (2003).
- [13] V. Gorbenko, A. Krasnikov, E. Mihokova, M. Nikl, S. Zazubovich, Y. Zorenko, J. Lumin. 134, 469 (2013).
- [14] U. Rambabu, S. D. Han, Ceram. Int. **39**, 701 (2013).
- [15] Y. Zhuang, J. Ueda, S. Tanabe, Opt. mater. Express. 2, 1378 (2012).
- [16] J. Kuang, Y. Liu, B. Lei, J. Lumin. 118, 33 (2006).
- [17] B. Lei, Y. Liu, Z. Ye, C. Shi, Chin. Chem. Lett. 15, 335 (2004).
- [18] V. Dotsenko, I. Berezovskaya, N. Efryushina, J. Phys. Chem. Solids. 57, 437 (1996).
- [19] M. Chirila, K. Stevens, H. Murphy, N. Giles, J. Phys. Chem. Solids. 61, 675 (2000).
- [20] B. Lei, Y. Liu, Z. Ye, C. Shi, J. Lumin. 109, 215 (2004).

^{*}Corresponding author: yangzw@kmust.edu.cn